

Covenant University

B.Eng. Degree Programme in

Information and Communication Engineering

Programme Education
Outcomes (PEOs), Programme
Outcomes (POs) and Mapping

A. PROGRAMME EDUCATION OBJECTIVES (PEOs)

Programme Educational Objectives (PEOs) of Information and Communication Engineering (ICE)

The Program Educational Outcomes (PEOs) of Information and Communication Engineering programme of Covenant University are drafted and agreed upon by the stakeholders of the programme involving the Board of Regent (BoR), University Management, alumni, parents, Industry Board Members, faculties, and students in alignment with the vision and mission of Covenant University and the programme.

PEO 1: Foundational knowledge and Problem Solving

Graduates will demonstrate a strong foundational knowledge of ICE principles and applications as well as leadership skills to create innovative solutions to real-world problems towards the sustainable development of the immediate environment.

PEO 2: Professionalism and Interdisciplinary collaborations

Graduates will apply relevant professional and management skills, demonstrate effective technical communication skills, work collaboratively in multidisciplinary teams to address complex engineering problems and contribute to the successful implementation of projects.

PEO 3: Research and Technological Advancement

Graduates will demonstrate strong research ethics and investigative capability using industry-standard software and advanced technology to develop sustainable, innovative solutions, bringing about products and services that meet societal needs

PEO 4: Ethical Practice and Lifelong Learning

Graduates will demonstrate compliance with national and international benchmarks of engineering standards and ethical practices, adhering regulations, showing commitment to lifelong learning and keeping up with professional growth and global competitiveness.

PEO 5: Entrepreneurship and Leadership

Graduates will demonstrate cutting-edge entrepreneurial and leadership skills in employment or become self-employed playing critical roles in project management decision making and finance supported by continuously growing ICT knowledge.

B. THE MAPPING OF PEO TO THE VISION AND MISSION OF THE UNIVERSITY, DEPARTMENT AND PROGRAMME

The mapping of the PEOs to the visions and missions of the institution, department, and programme is presented in Table 1. As shown in the table, the PEOs are consistently linked to the vision and mission of the programme.

Table 1: Mapping of PEOs to the visions and missions of the institution, department, and programme

Vision Mission			PEOs		
	l	rr	EUS		
	ersity The mission of the University	1	Conductes will and 1		
The vision of the University is	The mission of the University	1.	Graduates will apply relevant		
to be a leading World-Class	is to create knowledge and		professional and management		
University, committed to	restore man's dignity via a		skills, demonstrate effective		
raising a new generation of	Human Development Total		technical communication skills,		
leaders in all fields of human	Man Concept-driven		work collaboratively in		
endeavor.	curriculum employing		multidisciplinary teams to address		
	innovative, leading-edge		complex engineering problems		
	teaching and learning		and contribute to the successful		
	methods, research and	_	implementation of projects.		
	professional services that	2.	Graduates will apply relevant		
	promote integrated, life-		professional and management		
	applicable, life-transforming		skills, demonstrate effective		
	education relevant to the		technical communication skills,		
	context of Science,		work collaboratively in		
	Technology and Human		multidisciplinary teams to address		
	Capacity Building.		complex engineering problems		
Department			and contribute to the successful		
The vision of the Department	The mission of the		implementation of projects.		
is derived from Covenant	Department is to create	3.	Graduates will demonstrate		
University's vision, which is	universally applicable and		strong research ethics and		
succinctly captioned —	technologically relevant		investigative capability using		
Raising a New Generation of	knowledge in the field of		industry-standard software and		
Leaders. Therefore, the	Electrical and Information		advanced technology to develop		
Department is raising a new	Engineering, with the aim of		sustainable, innovative solutions,		
generation of leaders in	promoting an integrated and		bringing about products and		
Electrical and Information	universal education with real-		services that meet societal needs.		
Engineering disciplines.	life, real-time applicability	4.	Graduates will demonstrate		
	vis-à-vis science, technology		compliance with national and		
	and human capacity building.		international benchmarks of		
	amme		engineering standards and ethical		
The vision of the programme	The mission of the		practices, adhering regulations,		
is to produce total graduates	Programme is to create		showing commitment to lifelong		
empowered with the	universally applicable and		learning and keeping up with		
standards and practice of	technologically relevant		professional growth and global		
Information &	knowledge in the field of	_	competitiveness.		
Communication Engineering,	Information and	5.	Graduates will demonstrate		
complemented with	Communication Engineering,		cutting-edge entrepreneurial and		
application—oriented courses	with the aim of promoting an		leadership skills in employment		
that will advance their	integrated and universal		or become self-employed playing		
productive capacity to proffer	education with real-life, real-		critical roles in project		
solutions to national and	time applicability vis-à-vis,		management decision making and		
international societal	science, technology and		finance supported by		
challenges.	human capacity building.		continuously growing ICT		
			knowledge.		

C. PROGRAMME OUTCOMES (POs)

The Programme Outcomes (POs) outlines the specific skills, knowledge, and abilities that students are expected to gain by the end of their course. These outcomes help ensure that graduates are well-equipped to meet the demands of the industry. The POs of ICE are provided below:

Programme Outcomes

The programme outcomes (POs) as adapted directly from the COREN handbook are as follows:

- 1. **Engineering Knowledge**: Apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of developmental and complex engineering problems
- 2. **Problem Analysis**: Identify, formulate, research literature and analyze developmental and complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences
- 3. **Design/Development of Solutions:** Proffer solutions for developmental or complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal and environmental considerations
- 4. **Investigation:** Conduct investigation into developmental or complex problems using research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.
- 5. **Modern Tool Usage:** Create, select and apply appropriate techniques, resources and modern engineering and ICT tools, including prediction, modelling and optimization to developmental and complex engineering activities, with an understanding of the limitations.
- 6. **The Engineer and Society:** Apply reasoning informed by contextual knowledge including Humanities and Social Sciences to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
- 7. **Environment and Sustainability**: Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice, including adherence to the COREN Engineers Code of Conducts.
- 9. **Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
- 10. **Communication:** Communicate effectively on developmental or complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project Management and Finance**: Demonstrate knowledge and understanding of engineering, management and financial principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments
- 12. **Lifelong Learning:** Recognize the need for, and have the preparations and ability to engage in independent and lifelong learning in the broadest context of technological and social changes.

D. Mapping of POs to PEOs

The mapping of the POs to the PEOs of ICE programme is shown in Table 2 showing how the Pos are tailored to meeting the PEOs.

Table 2: Mapping of Pos to PEOs

Program Outcome (PO)	PEO1	PEO2	PEO3	PEO4	PEO5
PO1: Engineering Knowledge	*	*	*	*	*
PO2: Problem Analysis	*	*	*		*
PO3: Design/Development of solutions	*	*	*		*
PO4: Investigation	*	*	*		*
PO5: Modern Tool Usage	*	*	*		*
PO6: The Engineer and Society	*	*	*	*	*
PO7: Environment & Sustainability	*		*		*
PO8: Ethics	*	*	*	*	
PO9: Individual and Teamwork	*	*	*	*	*
PO10: Communication	*	*	*	*	
PO11: Project Management & Finance	*	*		*	*
PO12: Lifelong Learning	*		*	*	*

E. Curriculum Design

The design of the curriculum of Information and Communication Engineering is provided in Table 3.

Table 3: Design of the Information and Communication Engineering Curriculum

Domain	Knowledge Area	COREN NUC Recommended		Institute's Programme Breakup	
		Total	Overall	Total	Overall
		Credits	%	Credits	%
Non-	Humanities	As per		23	
Engineering	Management	discipline		7	
	Sciences	specific	25% - 40%		27
	Natural Sciences	COREN BMAS		34	
		guidelines			
	Computing			10	
	Engineering			35*	
	Foundation				
	Major Based Core			35**	
	(Breadth)	As per			
	Major Based Core	discipline		81***	
	(Depth)	specific			73
Engineering	Inter-Disciplinary	COREN BMAS		4	
	Engineering	guidelines	60% - 75%		
	Breadth				
	(Electives)				
	Final Year Design	6		6	
	Project				

Industrial Training (SIWES)	2		6	
Total	130 - 138	100%	241	100

^{*200} Level GEC courses,

^{**}Other GECs except 200 Level

^{***}Core Courses for the Programme